Neurobiological effects of prenatal alcohol exposure and stress: a potential pathway to increased vulnerability to substance use problems

Kristina Uban1
Joanne Weinberg1,2 & Liisa Galea1
Departments of 2Cellular and Physiological Sciences and 1Psychology

FETAL ALCOHOL CANADIAN EXPERTISE RESEARCH ROUNDTABLE
September 14, 2010
Background and hypotheses

- Children with FASD exhibit cognitive, behavioral, physical abnormalities that can last a lifetime
- “Secondary disabilities”, including mental health problems, alcohol and drug use and trouble with the law, can add challenges
- Increased prevalence of substance use/addiction problems likely influenced by genetic, neurobiological, environmental and social factors
- **Our focus:** What are the neurobiological mechanisms by which prenatal alcohol exposure influences vulnerability to addiction
Overview: What is Known

Stress

Prenatal Alcohol Exposure

Reward

Vulnerability to Addiction

Prenatal Alcohol Exposure

Prenatal Alcohol Exposure
What is stress?

- A constant factor in modern life and a frequent topic of conversation
- Stressors can be physical or psychological
- Stress can be good or bad

 Good stress – mild and short-term, exciting or novel challenge

 Bad stress – severe or chronic challenges, negative events, inability to cope – “stressed out”

Slide from Dr. Bruce McEwen
The HPA Axis and Sympathetic Nervous System act together to mediate the stress response.

(Hiller-Sturmhofel & Bartke, 1998), Alcohol Res & Health
Location of the major endocrine (hormone-producing) glands in the body

The stress system involves the hypothalamus, the pituitary and the adrenal glands
The Hypothalamic-pituitary-adrenal (HPA) or Stress Axis

Stress, circadian changes → activate HPA axis

↓

Cascade of responses

↓

Increased levels of hormones (ACTH, glucocorticoids)

↓

Feedback to reduce activity to normal - Feedback to pituitary, hypothalamus, hippocampus, PFC and other brain areas

(Hiller-Sturmhofel & Bartke, 1998)
Both natural rewards and addictive drugs influence behaviour by increasing dopamine levels in the nucleus accumbens and PFC.
Drugs of abuse and dopamine

• The DA system responds to salient stimuli – something that is pleasurable, important, worth paying attention to
• All drugs of abuse increase DA activity
• DA generally stays within the synapse for a very short time, then is removed and recycled by the cell
• Addiction \rightarrow ↓ in DA receptors \rightarrow natural rewards less effective
• At the same time, transporter that removes DA from synapse is altered \rightarrow DA stays around longer \rightarrow greater and more lasting reward, despite fewer DA receptors
• PAE also \rightarrow ↓ DA receptor activity
FASD, stress, dopamine and vulnerability to addiction

- The stress system (HPA axis) and dopamine reward system are key neurobiological pathways in addiction. They interact in numerous ways.

- The stress system has a role in initial vulnerability to drugs and in vulnerability to relapse.

- Brain area that mediate stress and reward overlap to a large extent.

- Both the stress system and the reward system are altered by prenatal exposure to alcohol.
FASD, stress, dopamine and vulnerability to addiction (cont’d)

- Intimate relationship between stress system (HPA axis) and substance use:
 - Distinct alterations in HPA function with different stages of substance use problems
 - Stress can sensitize healthy individuals to rewarding effects of drugs and can induce relapse after abstinence
 - ↑ stress responsiveness → ↑ propensity for drug self-administration
 - Repeated injections of stress hormones → drug self-administration occurs at a lower dose of drug
Alterations in stress response correspond with stage of substance use

<table>
<thead>
<tr>
<th>Stage of Use</th>
<th>HPA activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>↑</td>
</tr>
<tr>
<td>Dependence</td>
<td>↓</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>↑</td>
</tr>
<tr>
<td>Prolonged</td>
<td>Returns to baseline</td>
</tr>
<tr>
<td>Abstinence</td>
<td>Failure of HPA recovery correlated with ↑ risk for relapse</td>
</tr>
</tbody>
</table>
Possible pathophysiological mechanisms mediating the effects of stress on drug intake

From: Piazza & Le Moal
TiPS, 1998
Current Research

Do prenatal alcohol and stress interact to increase vulnerability to addiction?

• **Objective 1:** Examine the effects of prenatal alcohol exposure and stress in adulthood on the HPA axis and the reward system in males and females
 – Neurobiological mechanisms underlying interactions between these systems and expression of related behaviours

• **Objective 2:** Examine behavioral and HPA cross-sensitization between amphetamine and stress, as a marker of vulnerability to addiction in males and females
Cross-sensitization: Stress and AMPH

- Bidirectional:
 - Previous exposure to a psychostimulant drug (AMPH) can sensitize the behavioral response to that drug and to another drug or to stress.
Sensitization:
A behavioural marker of neurobiological vulnerability or resilience to addiction

Some aspects of the sensitization phenomenon may represent a major component of addiction (Robinson and Berridge, 1993).

- Differences in behavioral sensitization are predictive of subsequent drug self-administration and relapse
- Once established, the sensitization of dopamine systems can be observed for months and often up to one year later in the rat.
 - Clinical implications
- Sex difference (e.g., effects of estrogen)
Present Study: Cross-sensitization between AMPH and stress in PAE males and females

- How is the interaction between stress and drug use altered by alcohol exposure *in utero*?
- Are males and females differentially affected?
Study design

Prenatal treatments

Pregnant Dams

Control (C) Lab chow

Pair-Fed (PF) Liquid control diet

Alcohol (PAE) Liquid ethanol diet (36% EDC)

Offspring

C PF PAE

Offspring Tested in Adulthood (60 days of age)
Experimental Groups and Subjects:

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>AMPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PF</td>
<td>PF</td>
</tr>
<tr>
<td></td>
<td>PAE</td>
<td>PAE</td>
</tr>
<tr>
<td>Stress</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PF</td>
<td>PF</td>
</tr>
<tr>
<td></td>
<td>PAE</td>
<td>PAE</td>
</tr>
</tbody>
</table>

n=10 per group, males and females
Experimental Timeline:

Every other day, 16 days

Inject (1mg/kg), TEST

Inject (1mg/kg)

Inject (1mg/kg)

Inject (1mg/kg)

Inject (2mg/kg)

Inject (2mg/kg)

Inject (2mg/kg)

Inject, TEST (2mg/kg)

Inject AMPH (1mg/kg), sensitization TEST

Basal/ Stress sample following stressor

Every other day, 16 days

2 wk

5 d
Results to be shown:

• Locomotor activity on the sensitization test day
 – Animals previously exposed to AMPH or to Saline
 – 20 min pre-injection exploration → AMPH injection
 – Measure: Distance travelled, speed

• Hormone response to restraint stress in animals previously exposed to AMPH or Saline
Experimental Timeline:

- Breed, Wean
- Every other day, 16 days
 - Inject (1mg/kg), TEST
 - Inject (1mg/kg)
 - Inject (1mg/kg)
 - Inject (2mg/kg)
 - Inject (2mg/kg)
 - Inject, TEST (2mg/kg)
- Inject AMPH (1mg/kg), sensitization TEST
- Basal/ Stress sample following stressor
- 2 wk
- 5 d
DISTANCE TRAVELLED - Males

Enhanced response to AMPH challenge in Control and PF males previously treated with AMPH.

In contrast, enhanced response to AMPH in PAE males previously treated with Saline.

%change pre-to-post injection: Distance Traveled

Minutes post-injection

(Control) (Pair-fed) (PAE)

(%change from pre- to post-injection)
SPEED – Males
Enhanced response to AMPH challenge in Control and PF males previously exposed to AMPH
Enhanced response to AMPH in PAE males previously treated with Saline

Control

Pair-fed

PAE

Minutes post-injection

Minutes post-injection

Minutes post-injection

(%change from pre- to post-injection)
DISTANCE TRAVELLED - Females

Enhanced response to AMPH challenge in Control females previously treated with AMPH

No significant differences between AMPH and Sal groups for PF and PAE females

(%change from pre- to post- injection)
SPEED – Females

Enhanced response to AMPH challenge in Control females previously treated with AMPH.

No significant differences between AMPH and Sal groups for PF and PAE females.

Enhanced response to AMPH challenge in Control females previously treated with AMPH.

No significant differences between AMPH and Sal groups for PF and PAE females.

Enhanced response to AMPH challenge in Control females previously treated with AMPH.

No significant differences between AMPH and Sal groups for PF and PAE females.

Enhanced response to AMPH challenge in Control females previously treated with AMPH.

No significant differences between AMPH and Sal groups for PF and PAE females.
Experimental Timeline:

Every other day, 16 days

Inject (1mg/kg), TEST
 Inject (1mg/kg)
 Inject (1mg/kg)
 Inject (2mg/kg)
 Inject (2mg/kg)
 Inject, TEST (2mg/kg)

Inject AMPH (1mg/kg), sensitization TEST
Basal/ Stress sample following stressor

Breed, Wean

Every other day, 16 days

2 wk

5 d
Increased stress hormone levels (CORT, ACTH) in AMPH-treated PAE males following subsequent stressor challenge.
Enhanced stress hormone levels (ACTH) in AMPH-treated PAE females following subsequent stressor challenge
Conclusions:

• Differential effects of prior AMPH exposure on behavioral and hormonal responses to AMPH challenge in PAE compared to control animals

• Sex differences in both AMPH sensitization and PAE effects on sensitization observed

• HPA response to stress reflects cross-sensitization between AMPH and stress in PAE but not control animals

• Altered neurobiological and neurobehavioral responsiveness induced by PAE may increase vulnerability to addiction
Acknowledgments

Special Thanks to:
Farinaz Poursoltani
Dr. Wendy Comeau
Wayne Yu
Tamara Bodnar
Linda Ellis
Andrew Choe
Fiona Choi
Cindy Barha
Dr. Jon Epp
Dr. Wendy Wilson
Robin
Carmen
Kasia Stepień
Vivian Lam